Exponents and Almost Periodic Orbits

نویسنده

  • ALEX CLARK
چکیده

We introduce the group of exponents of a map of the reals into a metric space and give conditions under which this group embeds in the first Čech cohomology group of the closure of the image of the map. We show that this group generalizes the subgroup of the reals generated by the Fourier-Bohr exponents of an almost periodic orbit and that any minimal almost periodic flow in a complete metric space is determined up to (topological) equivalence by this group. We also develop a way of associating groups with any selfhomeomorphism of a metric space that generalizes the rotation number of an orientation-preserving homeomorphism of the circle with irrational rotation number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Exponents of Hyperbolic Measures and Hyperbolic Periodic Orbits

Lyapunov exponents of a hyperbolic ergodic measure are approximated by Lyapunov exponents of hyperbolic atomic measures on periodic orbits.

متن کامل

Polynomial Diffeomorphisms of C 2 : v. Critical Points and Lyapunov Exponents

§0. Introduction This paper deals with the dynamics of polynomial diffeomorphisms f : C → C. To exclude trivial cases we make the standing assumption that the dynamical degree d = d(f) is greater than one (see Section 1 for a definition). It is often quite useful in dynamics to focus attention on invariant objects. A natural invariant set to consider is K = Kf , the set of points with bounded o...

متن کامل

Analyses of transient chaotic time series.

We address the calculation of correlation dimension, the estimation of Lyapunov exponents, and the detection of unstable periodic orbits, from transient chaotic time series. Theoretical arguments and numerical experiments show that the Grassberger-Procaccia algorithm can be used to estimate the dimension of an underlying chaotic saddle from an ensemble of chaotic transients. We also demonstrate...

متن کامل

Almost Periodic Orbits and Stability for Quantum Time-dependent Hamiltonians

We study almost periodic orbits of quantum systems and prove that for periodic time-dependent Hamiltonians an orbit is almost periodic if, and only if, it is precompact. In the case of quasiperiodic time-dependence we present an example of a precompact orbit that is not almost periodic. Finally we discuss some simple conditions assuring dynamical stability for nonautonomous quantum system.

متن کامل

Theoretical Computation of Lyapunov Exponents for Almost Periodic Hamiltonian Systems

Lyapunov exponents are an important concept to describe qualitative properties of dynamical systems. For instance, chaotic systems can be caracterized with the positivity of the largest Lyapunov exponent. In this paper, we use the Iwasawa decomposition of the semisimple Lie group Sp(n,R) and the enlargement of the phase space to give a theoretical computation of Lyapunov exponents of almost per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999